DISCREPANCY PARAMETERS OF APPROXIMATIONS OF DISCRETELY SPECIFIED DEPENDENCIES BY ANALYTICAL FUNCTIONS AND SEARCH CRITERIA FOR OPTIMAL VALUES OF THEIR COEFFICIENTS
Article_2 PDF (Українська)

Keywords

electrical resistance
discharge current
spark-erosion dispersion
approximation
discrepancy
search criteria

How to Cite

Шидловська, Н., С. . Захарченко, and І. . Мазуренко. “DISCREPANCY PARAMETERS OF APPROXIMATIONS OF DISCRETELY SPECIFIED DEPENDENCIES BY ANALYTICAL FUNCTIONS AND SEARCH CRITERIA FOR OPTIMAL VALUES OF THEIR COEFFICIENTS”. Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, no. 59, Sept. 2021, p. 011, doi:10.15407/publishing2021.59.011.

Abstract

Universal discrepancy parameters of approximations of discretely specified dependencies by analytical functions and search criteria for optimal values of their coefficients, as well as analysis of features of their application are described. Discrepancy parameters of approximations, which do not depend on the ranges of variation of the values of functions and the number of points of a discretely specified dependence, are proposed. They can be effective for objectively comparing the quality of approximations of any dependencies by any functions. Approximations of a discretely specified dependence of the mathematical expectation of the equivalent electrical resistance of a layer of aluminum granules during spark- erosion dispersion in water on the instantaneous values of the discharge current are carried out. As approximating func- tions, we chose a power function with an exponent factor –1 and a function based on exponential. Using the criteria of the least approximation error, the optimal values of the coefficients of both approximating functions are founded. It is shown in which cases it is advisable to use the combined search criteria for the optimal values of the coefficients of the approxi- mating functions, and in which are enough simple one-component ones. Ref. 27, fig. 2, tables 2.

https://doi.org/10.15407/publishing2021.59.011
Article_2 PDF (Українська)

References

Zakharchenko S.N. Modelling of Dependence of Electrical Resistance of Granulated Current-carrying Mediums from a Pulse Current Proceeding in them. Tekhnichna Elektrodynamika. 2012. No 5. Pp. 17–27. (Rus)

Linnik Yu.V. The least squares method and the foundations of the mathematical and statistical theory of observa- tion processing. Moscow: State publishing house of physical and mathematical literature, 1962. 354 p. (Rus)

Vinogradov V.N., Gai E.V., Rabotnov N.S. Analytical data approximation in nuclear and neutron physics. Mos- cow: Energoatomizdat, 1987. 128 p. (Rus)

Least Squares Method. URL: https://ru.wikipedia.org/w/index.php?title=Metod_naimen'shih_kvadratov&stable=1. (accesstd: 12.07.2021. (Rus)

Tsidelko V.D., Yaremchuk N.A. Measurement uncertainty. Data processing and presentation of the measure- ment result. Kyiv: Polіtekhnіka, 2002. 176 p. (Ukr).

Shydlovskaya N.A., Zakharchenko S.N., Cherkasskyi A.P. Nonlinear-parametrical Model of Electrical Resis- tance of Current-Carrying Granulated Mediums for a Wide Range of Applied Voltage. Tekhnichna Elektrody- namika. 2014. No 6. Pp. 3–17. (Rus)

Mikheeva E.N., Seroshtan M.V. Quality management. Moskva: publishing-trading corporation «Dashkov & Co», 2009. 708 p. (Rus.)

Berkowitz A.E., Hansen M.F., Parker F.T., Vecchio K.S., Spada F.E., Lavernia E.J., Rodriguez R. Amorphous soft magnetic particles produced by spark erosion. Journal of Magnetism and Magnetic Materials. 2003. Vol. 254–255. Pp. 1–6. DOI: https://doi.org/10.1016/S0304-8853(02)00932-0

Shydlovska N.A., Zakharchenko S.M. Discrete Nonlinear-Probabilistic Model of the Equivalent Electrical Resistance of a Layer of Metal Granules. Tekhnichna Elektrodynamika. 2021. No 2. Pp. 3–12. (Ukr). DOI: https://doi.org/10.15407/techned2021.02.003

Asanov U.A., Tsoj A.D., Shcherba A.A., Kazekin V.I. Electroerosive technology of interconnections and pow- ders of metals. Frunze: Ilym, 1990. 256 p. (Rus.)

Perekos A.E., Chernenko V.A., Bunayev S.A., Zalutskiy V.P., Ruzhitskaya T.V., Boitsov O.F., Kakazei G.N. Structure and Magnetic Properties of Highly Dispersed Ni-Mn-Ga Powders Prepared by Spark-Erosion. Journal of Applied Physics. 2012. Vol. 112. Pp. 093909-1 – 093909-7. DOI: https://dx.doi.org/10.1063/1.4764017

Monastyrsky G. Nanoparticles formation mechanisms through the spark erosion of alloys in cryogenic liquids.

Nanoscale Research Letters. 2015. Vol. 10: 503. Pp. 1–8. DOI: https://doi.org/10.1186/s11671-015-1212-9

Harrington T., McElfresh C., Vecchio K.S. Spark erosion as a high-throughput method for producing bimodal nanostructured 316L stainless steel powder. Powder Technology. 2018. Vol. 328. Pp. 156–166. DOI: https://doi.org/10.1016/j.powtec.2018.01.012

Liu Y., Zhu K., Li X., Lin F., Li Y. Analysis of multi-scale Ni particles generated by ultrasonic aided electrical discharge erosion in pure water. Advanced Powder Technology. 2018. Vol. 29. Issue 4. Pp. 863–873. DOI: https://doi.org/10.1016/j.apt.2018.01.003

Monastyrsky G.E., Yakovenko P.A., Kolomytsev V.I., Koval Yu.N., Shcherba A.A., Portier R. Characterization of spark-eroded shape memory alloy powders obtained in cryogenic liquids. Materials Science and Engineering: A. 2008. Vol. 481–482. Pp. 643–646. DOI: https://doi.org/10.1016/j.msea.2006.12.213

Goncharuk V.V., Shcherba A.A., Zakharchenko S.N., Savluk O.S., Potapchenko N.G., Kosinova V.N. Disinfec- tant action of the volume electrospark discharges in water. Khimiia i tehnologiia vody. 1999. Vol. 21. No 3. Pp. 328–336. (Rus)

Petrichenko S.V., Tsolin P.L., Yushchishina A.N. Electric-spark cleaning of electroplating drains from heavy metal ions in a flow reactor. Elektronnaya obrabotka materialov. 2020.Vol. 56, No 5. Pp. 109–114. DOI: https://doi.org/10.5281/zenodo.4045711

Danilenko N.B., Savel’ev G.G., Yavorovskii N.A., Khaskel’berg M.B., Yurmazova T.A., Shamanskii V.V. Wa- ter purification to remove As(V) by electropulse treatment of an active metallic charge. Russian Journal of Ap- plied Chemistry. 2005. Vol. 78. No 10. Pp. 1631–1635. DOI: https://doi.org/10.1007/s11167-005-0575-6

Shcherba A.A., Zakharchenko S.N., Lopatko K.G., Aftandilyants E.G. Application of volume electric spark dis- persion for production steady to sedimentation hydrosols of biological active metals. Pratsi Instytutu Elektrody- namiky Natsionalnoi Akademii Nauk Ukrainy. 2009. Issue 22. Pp. 74–79. (Rus)

Lopatko K.G., Melnichuk M.D. Physics, synthesis and biological functionality of nanosize objects. Kyiv: Vi- davnichij centr Natsionalnogo Universitetu Bioresursiv i Priridokoristuvannya Ukraini, 2013. 297 p. (Ukr)

Borisevich V.B., Kaplunenko V.G., Kosinov N.V., Borisevich B.V. Nanomaterials and nanotechnology in veterinary practice. Kyiv: Publishing House “Avitsena”, 2012. 512 p.

Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Physical Prerequisites of Construction of Mathematical Models of Electric Resistance of Plasma-erosive Loads. Tekhnichna Electrodynamika. 2017. No 2. Pp. 5–12. (Ukr) DOI: https://doi.org/10.15407/techned2017.02.005

Shydlovska N.A., Zakharchenko S.M., Cherkassky O.P. The Analysis of Electromagnetic Processes in Output Circuit of the Generator of Discharge Pulses with Non-linear Model of Plasma-erosive Load at Change Their Pa- rameters in Wide Ranges. Tekhnichna Elektrodynamika. 2016. No 1. Pp. 87–95. (Rus) DOI: https://doi.org/10.15407/techned2016.01.087

Shydlovskyi A.K., Shcherba A.A., Suprunovska N.I. Power Processes in Electrical Pulse Devices with Capaci- tive Energy Storages. Kyiv: Interkontinental-Ukraina, 2009. 208 p. (Rus)

Ivashchenko D.S., Shcherba A.A., Suprunovska N.I. Analyzing Probabilistic Properties of Electrical Characteris- tics in the Circuits Containing Stochastic Load. Proc. IEEE International Conference on Intelligent Energy and Power Systems IEPS-2016. Kyiv, Ukraine, June 7–11, 2016. Pp. 45–48. DOI: https://doi.org/10.1109/IEPS.2016.7521887

Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Parametric Model of Resistance of Plasma-erosive Load, Adequate in the Wide Range of Change of Applied Voltage. Tekhnichna Elektrodynamika. 2017. No 3. Pp. 3–12. (Ukr) DOI: https://doi.org/10.15407/techned2017.03.003

Podoltsev A.D., Suprunovskaya N.I. Modelling and the analysis of electric discharge processes in nonlinear RLC-circuits. Tekhnichna electrodynamica. Tematichnyi vypusk “Problemy suchasnoi elektrotekhniky”. 2006. Vol. 4. P. 3–8. (Rus)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 N.A. Shydlovska, S.M. Zakharchenko, I.L. Mazurenko

Downloads

Download data is not yet available.