INFLUENCE OF ELECTROPHYSICAL PARAMETERS OF MATERIALS ON ELECTRICAL LOSSES IN METAL FRAMES OF INDUCTION CHANNEL FURNACES
Article_15 PDF (Українська)

Keywords

induction channel furnace
metal frames
mathematical modelling
electrical losses

How to Cite

Гориславець, Ю., Глухенький O., and В. . Залозний. “INFLUENCE OF ELECTROPHYSICAL PARAMETERS OF MATERIALS ON ELECTRICAL LOSSES IN METAL FRAMES OF INDUCTION CHANNEL FURNACES”. Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, no. 66, Dec. 2023, p. 090, doi:10.15407/publishing2023.66.090.

Abstract

On the basis of mathematical modelling of electromagnetic processes, electrical losses in the metal frames of the two-inductor induction channel furnace in a wide range of specific electrical conductivity of the non-magnetic material of the frames were determined. Research was conducted for two options for sectioning the lower frame of the furnace (vertical and horizontal) and two values of the phase angle between the voltages on the inductors (0 and 180 electrical degrees). For these cases, losses in furnace frames made of ferromagnetic material (construction carbon steel and magnetic stainless steel) were also calculated. Recommendations are presented on the selection of the frame material, the sectioning option and the phase angle between the voltages, which ensure minimal electrical losses. References 13, figures 4.

https://doi.org/10.15407/publishing2023.66.090
Article_15 PDF (Українська)

References

https://www.otto-junker.com/en/products-technologies/furnaces-plants-for-copper-and-copper-based-alloys/foundry/channel-type-induction-furnaces-for-melting (Accessed: 15.05.2023)

Kirpo M., Jakovičs A., Nacke B., Baake E., Langejürgen M. LES of Heat and Mass Exchange in Induction Channel Furnaces. Przegląd Elektrotechniczny. 2008. R. 84. No 11. Pp. 154-158. DOI: https://doi.org/10.1615/ICHMT.2009.TurbulHeatMassTransf.70

Boyarevich V.V., Freyberg Ya.Zh., Shilova E.I., Shcherbinin E.V. Electrovortex flows. Riga: Zinatne, 1985. 315 p. (Rus)

Bondar O.I., Goryslavets Yu.M., Zharkin A.F. Intensification of heat and mass exchange in induction channel furnaces. Tekhnichna elektrodynamika. 2022. No. 3. Pp. 49–54. DOI: https://doi.org/10.15407/techned2022.03.049 (Ukr)

Goryslavets Yu.M., Glukhenkyi O.I., Zaloznyi V.I. Modelling of electromagnetic processes in induction chan-nel furnaces taking into account metal frames. Pratsi Instytutu elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2023. No 64. Pp. 64–69. DOI: https://doi.org/10.15407/publishing2023.64.064 (Ukr)

Comsol Multiphysics, https://www.comsol.com/ (Accessed: 15.05.2023)

ABP Induction Systems GmbH. https://abpinduction.com/en/ (Accessed: 15.05.2023)

https://www.upcast.com/ (Accessed: 15.05.2023)

Fisk M., Ristinmaa M., Hultkrantz A., Lindgren L.-E. Coupled electromagnetic-thermal solution strategy for induction heating of ferromagnetic materials. Applied Mathematical Modelling. November 2022. Vol. 111. Pp. 818–835. DOI: https://doi.org/10.1016/j.apm.2022.07.009

Siesing L., Frogner K., Cedell T., Andersson M. Investigation of Thermal Losses in a Soft Magnetic Compos-ite Using Multiphysics Modelling and Coupled Material Properties in an Induction Heating Cell. Journal of Electromagnetic Analysis and Applications. September 2016. Vol. 8. No 9. Pp. 182–196. DOI: 10.4236/jemaa.2016.89018

https://www.comsol.ru/release/5.2 (Accessed: 15.05.2023)

Adaskin A.M., Zuev V.M. Materials science (metalworking): textbook. M.: Publishing center Akademiya. 2013. 288 p. (Rus)

https://www.comsol.com/blogs/exploiting-symmetry-simplify-magnetic-field-modeling/ (Accessed: 15.05.2023)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Yu.M. Goryslavets, O.I. Glukhenkyi, V.I. Zaloznyi

Downloads

Download data is not yet available.