МЕТОДИ КЕРУВАННЯ ЗАДЛЯ УСУНЕННЯ ГАРМОНІК У СИСТЕМАХ ГЕНЕРУВАННЯ ЕЛЕКТРОЕНЕРГІЇ НА ОСНОВІ МАШИНИ ПОДВІЙНОГО ЖИВЛЕННЯ
Article_2 PDF

Ключові слова

система генерування електроенергії
усунення гармонік
якість електроенергії
машина подвійного живлення

Як цитувати

Шаповал, І., В. Михальський, М. Артеменко, В. Чопик, і С. Поліщук. «МЕТОДИ КЕРУВАННЯ ЗАДЛЯ УСУНЕННЯ ГАРМОНІК У СИСТЕМАХ ГЕНЕРУВАННЯ ЕЛЕКТРОЕНЕРГІЇ НА ОСНОВІ МАШИНИ ПОДВІЙНОГО ЖИВЛЕННЯ». Праці Інституту електродинаміки Національної академії наук України, вип. 61, Травень 2022, с. 013, doi:10.15407/publishing2022.61.013.

Анотація

Система генерування електроенергії на основі машини подвійного живлення зі змінною швидкістю є найпопулярнішою системою у вітроенергетичній галузі. У такому генераторі статор приєднано безпосередньо до мережі, тоді як ротор приєднано до мережі за допомогою напівпровідникового перетворювача. Низька якість електроенергії збільшує енергетичні та економічні втрати, призводить до експлуатаційних проблем її виробництва. У ряді публікацій йдеться про покращення якості електроенергії, зокрема, про методи усунення гармонік для системи генерування електроенергії на основі машини подвійного живлення. Критична оцінка потрібна для того, щоб зробити вибір методу усунення гармонік для конкретного випадку. У статті представлено огляд різних методів керування для усунення гармонік у системах генерування електроенергії на основі машини подвійного живлення. Розглянуто різні стратегії, які використовуються як в автономних системах, так і в режимі приєднання до мережі. Під час розгляду методів керування для усунення гармонік було зазначено їхні різні характеристики, а також переваги та недоліки кожного з методів. Бібл. 53, рис. 6.

https://doi.org/10.15407/publishing2022.61.013
Article_2 PDF

Посилання

Saber A.Y., Venayagamoorthy G.K. Efficient utilization of renewable energy sources by gridable vehicles in cyber-physical energy systems. IEEE Systems Journal. Sept. 2010. Vol. 4, No. 3. P. 285–294. DOI: https://doi.org/10.1109/JSYST.2010.2059212

Nikolova S., Causevski A., Al-Salaymeh A. Optimal operation of conventional power plants in power system with integrated renewable energy sources. Energy Conversion and Management. Jan. 2013. Vol. 65. P. 697–703. DOI: https://doi.org/10.1016/j.enconman.2011.11.035

Böttger D., Götz M., Theofilidi M., Bruckner T. Control power provision with power-to-heat plants in systems with high shares of renewable energy sources - An illustrative analysis for Germany based on the use of electric boilers in district heating grids. Energy. 2015. Vol. 82. P. 157–167. DOI: https://doi.org/10.1016/j.energy.2015.01.022

Gianfranco Chicco, Marialaura Di Somma, Giorgio Graditi, Chapter 1 - Overview of distributed energy resources in the context of local integrated energy systems, Editor(s): Giorgio Graditi, Marialaura Di Somma, Distributed Energy Resources in Local Integrated Energy Systems, Elsevier. 2021. Pp. 1-29, DOI: https://doi.org/10.1016/B978-0-12-823899-8.00002-9.

Smith J.C., Parson B. What does 20% look like?. IEEE Power and Energy Magazine. Nov. - Dec. 2007. Vol. 5, No. 6. P. 22–33. DOI: https://doi.org/10.1109/MPE.2007.906565

Chen Z., Blaabjerg F. Wind energy: The world’s fastest growing energy source. IEEE Power Electronics Society Newsletter. 2006. Vol. 18, No. 3, P. 15–19. DOI:

Andrews J., Jelley N. Energy Science - principles, technologies and impacts. Oxford University Press, 116-117 High St, Oxford, U.K., 2007.

World Wind Energy Association. World wind energy report 2017. Tech. Rep. URL: https://wwindea.org/blog/category/statistics/

Thresher R., Robinson M., Veers P. To capture the wind. IEEE Power and Energy Magazine. Nov.-Dec. 2007. Vol. 5, No. 6, P. 34–46. DOI: https://doi.org/10.1109/MPE.2007.906304

Muljadi E., Butterfield C.P., Chacon J., Romanowitz H. Power quality aspects in a wind power plant. Proceedings of Power Engineering Society General Meeting. 2006. Montreal, Canada. 18-22 June 2006. DOI: https://doi.org/10.1109/PES.2006.1709244

Wachtel S., Marques J., Quitman E., Schellschmidt M. Wind energy converters with FACTS capabilities and the benefits for the integration of wind power plants into power systems. Proceedings of European Wind Energy Conference and Exhibition (EWEC). Milan. May 7-10, 2007. P. 1761–65.

Blaabjerg F., Chen Z. Power Electronics for Modern Wind Turbines. Synthesis Lectures on Power Electronics. Morgan & Claypool, U.S., 2006.

Walling R.A., Saint R., Dugan R.C., Burke J., Kojovic L.A. Summary of distributed resources impact on power delivery systems. IEEE Transactions on Power Delivery. July 2008. Vol. 23, No. 3, P. 1636–1644. DOI: https://doi.org/10.1109/TPWRD.2007.909115

Smith J.C., Milligan M.R., DeMeo E.A., Parsons B. Utility wind integration and operating impact state of the art. IEEE Transactions on Power Systems. Aug. 2007. Vol. 22, No. 3. P. 900–908. DOI: https://doi.org/10.1109/TPWRS.2007.901598

Kalich C., King J., Milligan M.R., Murlay C., Oakleaf B., DeMeo E.A., Jordan G.A., Schuerger M.J. Accomodating wind’s natural behavior. IEEE Power and Energy Magazine. Nov.-Dec. 2007. Vol. 5, No. 6. P. 59–67. DOI: https://doi.org/10.1109/MPE.2007.906562

Hansen A.D., Michalke G., Sorensen P., Lund T. Co-ordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults. Wind Energy, 2007. Vol. 10, No. 1. P. 51–68. DOI: https://doi.org/10.1002/we.207

Prodanovic M., De Brabandere K., Van den Keybus J., Green T., Driesen J. Harmonic and reactive power compensation as ancillary services in inverter-based distributed generation. IET Generation, Transmission & Distribution. March, 2007. Vol. 1, No. 3. P. 432–38. DOI: https://doi.org/10.1049/iet-gtd:20060064

Peña R, Cárdenas R., Proboste J., Asher G., Clare J. Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer. IEEE Transactions on Industrial Electronivs. Jan. 2008. Vol. 55, No. 1. P. 330–339. DOI: https://doi.org/10.1109/TIE.2007.896299

Abad G., Rodrıguez M.A., Iwanski G., Poza J. Direct power control of doubly-fedinduction-generator-based wind turbines under unbalanced grid voltage. IEEE Transactions on Power Electronics. 2010. Vol. 25. P. 442–452. DOI: https://doi.org/10.1109/TPEL.2009.2027438

Anirban Mishra, Kalyan Chatterjee Harmonic analysis and attenuation using LCL-filter in doubly fed induction generator based wind conversion system using real time simulation based OPAL-RT. Alexandria Engineering Journal. Vol. 61. Issue 5. 2022. Pp. 3773-3792. DOI: https://doi.org/10.1016/j.aej.2021.08.079

Sharadbhai P.T. and Gupta S. Artificial Neural Network Based Control of Doubly Fed Induction Generator For Active Filtering Capabilities. 2021 4th International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE). 2021. Pp. 107-112. DOI: https://doi.org/10.1109/RDCAPE52977.2021.9633346

Peña R., Cárdenas R., Escobar E., Clare J., Wheeler P. Control system for unbalanced operation of stand-alone doubly fed induction generators. IEEE Transactions on Energy Conversion. June 2007. Vol. 22, No. 2. P. 544–545. DOI: https://doi.org/10.1109/TEC.2007.895393

Fayssal Amrane, Bruno Francois, Azeddine Chaiba Experimental investigation of efficient and simple wind-turbine based on DFIG-direct power control using LCL-filter for stand-alone mode. ISA Transactions. 2021. DOI: https://doi.org/10.1016/j.isatra.2021.07.008

Sabir B., Rawat V.K., Faizan M. and Tahir M. Analysis of Generated Harmonics in DFIG Driven by Wind Turbine during Linear & Non-Linear Load. 2021 International Conference on Computer Communication and Informatics (ICCCI). 2021. Pp. 1-7. DOI: https://doi.org/10.1109/ICCCI50826.2021.9402269

Vishal, Mishra A. and Chatterjee K. Power Quality Enhancement of DFIG based Wind Turbine by Active Filter Implementation. 2019 International Conference on Ubiquitous and Emerging Concepts on Sensors and Transducers (UEMCOS). 2019. Pp. 1-6. DOI: https://doi.org/10.1109/UEMCOS46508.2019.9221614

Jain A.K., Ranganathan V.T. Wound rotor induction generator with sensorless control and integrated active filter for feeding nonlinear loads in a stand-alone grid. IEEE Transactions on Industrial Electronics. Jan. 2008. Vol. 55, No. 1. P. 218–228. DOI: https://doi.org/10.1109/TIE.2007.911196

Forchetti D.G., GarcIa G.O., Valla M.I. Adaptive observer for sensorless control of stand-alone doubly fed induction generator. IEEE Transactions on Industrial Electronics. Oct. 2009. Vol. 56. No. 10. P. 4174–4180. DOI: https://doi.org/10.1109/TIE.2009.2014907

Phan V.T., Kwak S.-H., Lee H.-H. An improved control method for DFIG-based wind system supplying unbalanced stand-alone loads. Proceedings of the IEEE international symposium on industrial electronics. 2009. P. 1081–1086. DOI: https://doi.org/10.1109/ISIE.2009.5213104

Phan V.-T., Lee H.-H., Chun T.-W. An improved control strategy using a PI-resonant controller for an unbalanced stand-alone doubly-fed induction generator. Journal of Power Electronics. Mar. 2010. Vol. 10, No. 2. P. 194–202. DOI: https://doi.org/10.6113/JPE.2010.10.2.194

Protsenko K., Xu D. Modeling and control of brushless doubly-fed induction generators in wind energy applications. IEEE Transactions on Power Electronics. May 2008. Vol. 23, No. 3. P. 1191–1197. DOI: https://doi.org/10.1109/TPEL.2008.921187

Santos-Martin D., Rodriguez-Amenedo J.L., Arnalte S. Direct power control applied to doubly fed induction generator under unbalanced grid voltage conditions. IEEE Transactions on Power Electronics. Sept. 2008. Vol. 23, No. 5. P. 2328–2336. DOI: https://doi.org/10.1109/TPEL.2008.2001907

Zhou P., He Y., Sun D. Improved direct power control of a DFIG-based wind turbine during network unbalance. IEEE Transactions on Power Electronics. 2009. Vol. 24. P. 2465–2474. DOI: https://doi.org/10.1109/TPEL.2009.2032188

Sheng Hu, Guorong Zhu Enhanced control and operation for brushless doubly-fed induction generator based wind turbine system under grid voltage unbalance. Electric Power Systems Research. Vol. 207. 2022. 107861. DOI: https://doi.org/10.1016/j.epsr.2022.107861

Tan K., Islam S. Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System without Mechanical Sensors. IEEE Transactions on Energy Convsion. June 2004. Vol. 19, No. 2. P. 392–399. DOI: https://doi.org/10.1109/TEC.2004.827038

Phan V.-T., Lee H.-H. Control strategy for harmonic elimination in stand-alone DFIG applications with nonlinear loads. IEEE Transactions on Power Electronics. Sept. 2011. Vol. 26, No. 9. P. 2662–2675. DOI: https://doi.org/10.1109/TPEL.2011.2123921

Phan V.-T., Lee H.-H. Improved predictive current control for unbalanced stand-alone doubly-fed induction generator-based wind power systems. IET Electric Power Applications. Mar. 2011. Vol. 5, No. 3. P. 275–287. DOI: https://doi.org/10.1049/iet-epa.2010.0107

Wei F., Zhang X., Vilathgamuwa D.M., Choi S.S., Wang S. Mitigation of distorted and unbalanced stator voltage of stand-alone doubly fed induction generators using repetitive control technique. IET Electric Power Applications. Aug. 2013. Vol. 7, No. 8. P. 654–663. DOI: https://doi.org/10.1049/iet-epa.2012.0317

Gaillard A., Poure P., Saadate S., Machmoum M. Variable speed DFIG wind energy system for power generation and harmonic current mitigation. Renewable Energy. June 2009. Vol. 34, No. 6. P. 1545–1553. DOI: https://doi.org/10.1016/j.renene.2008.11.002

Gaillard A., Poure P., Saadate S. Reactive power compensation and active filtering capability of WECS with DFIG without any over-rating. Wind Energy. Oct. 2010. Vol. 13, No. 7. P. 603–614. DOI: http://dx.doi.org/10.1002/we.381

Abolhassani M.T., Niazi P., Toliyat H.A., Enjeti P. Integrated Doubly Fed Electric Alternator/Active Filter (IDEA), a Viable Power Quality Solution, for Wind Energy Conversion Systems. IEEE Transactions on Energy Conversion. June 2008. Vol. 23. No. 2. P. 642–650. DOI: https://doi.org/10.1109/TEC.2007.914181

Boutoubat M., Mokrani L., Machmoum M. Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement. Renewable Energy. 2013. No. 50. P. 378–386. DOI: https://doi.org/10.1016/j.renene.2012.06.058

Akagi H., Kanazawa Y., Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Transactions on Industry Applications. May 1984. Vol. IA-20, No. 3. P. 625–630. DOI: https://doi.org/10.1109/TIA.1984.4504460

Massoud A.M., Finney S.J, Williams BW. Review of harmonic current extraction techniques for an active power filter. Proceedings of the IEEE 11th International Conference on Harmonics and Quality of Power. 12-15 Sept. 2004. P. 154–159. DOI: https://doi.org/10.1109/ICHQP.2004.1409345

Asiminoael L., Blaabjerg F., Hansen S. Detection is key - harmonic detection methods for active power filter applications. IEEE Industry Applications Magazine. July-Aug. 2007. Vol. 13, No. 4. P. 22–33. DOI: https://doi.org/10.1109/MIA.2007.4283506

Machmoum M., Bruyant N. DSP based control of shunt active power filters for global or selective harmonics compensation. Proceedings of the international conference on harmonics and quality of power. 1-4 Oct. 2000. Vol. 2. P. 661–666. DOI: https://doi.org/10.1109/ICHQP.2000.897757

Mattavelli P., Marafao F.P. Repetitive-based control for selective harmonic compensation in active power filters. IEEE Transactions on Industrial Electronics. Oct. 2004. Vol. 51, No. 5. P. 1018–1024. DOI: https://doi.org/10.1109/TIE.2004.834961

Bojoi R., Griva G., Guerriero M., Farina F., Profumo F., Bostan V. Improved current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame. Proceedings of the annual power electronics specialists conference. 2004. Vol. 6. P. 4623–4629. DOI: https://doi.org/10.1109/PESC.2004.1354817

Reis F., Ale J., Adegas F., Tonkoski R. Jr., Slan S., Tan K. Active Shunt Filter for Harmonic Mitigation in Wind Turbine Generators. Proceedings of the 37th IEEE Power Electronics Specialist Conference, Jeju, Korea, 2006. P. 1–9. DOI: https://doi.org/10.1109/pesc.2006.1711743

Kesraoui M., Chaib A., Meziane A., Boulezaz A. Using a DFIG based wind turbine for grid current harmonics filtering. Energy Conversion and Management. Feb. 2014. Vol. 78. P. 968–975. DOI: https://doi.org/10.1016/j.enconman.2013.07.090

Mishra A., Tripathi P.M., Chatterjee K. A review of harmonic elimination techniques in grid connected doubly fed induction generator based wind energy system. Renewable and Sustainable Energy Reviews. June 2018.Vol. 89. P. 1–15. DOI: https://doi.org/10.1016/j.rser.2018.02.039

Shapoval I.A., Mykhalskyi V.M., Artemenko M.Yu., Chopyk V.V. and Polishchuk S.Y. Compensation of Current Harmonics by means of Multiple Generation System with Doubly-Fed Induction Generators. 2020 IEEE 7th International Conference on Energy Smart Systems (ESS). 2020. Pp. 26-29. DOI: https://doi.org/10.1109/ESS50319.2020.9160238

Shapoval I.A., Mykhalskyi V.M., Sobolev V.M., Chopyk V.V. and Polishchuk S.Y. Selective Compensation of Current Harmonics in Grid-Connected Doubly-Fed Induction Generator based Wind Energy System. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). 2018. Pp. 214-218, DOI: https://doi.org/10.1109/IEPS.2018.8559569

Shapoval I.A., Mykhalskyi V.M., Artemenko M.Yu., Chopyk V.V. and Polishchuk S.Y. Compensation of Current Harmonics by Means of Grid-Side Converter in Doubly-Fed Induction Generator Based Wind Energy System. 2019 IEEE 6th International Conference on Energy Smart Systems (ESS). 2019. Pp. 227-232. DOI: https://doi.org/10.1109/ESS.2019.8764226

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Авторське право (c) 2022 Інститут електродинаміки Національної академії наук України

Завантаження

Дані завантаження ще не доступні.